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Group theoretic reduction of Laplacian dynamical problems on fractal lattices
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Discrete forms of the Schro¨dinger equation, the diffusion equation, the linearized Landau-Ginzburg equa-
tion, and discrete models for vibrations and spin dynamics belong to a class of Laplacian-based finite differ-
ence models. Real-space renormalization of such models on finitely ramified regular fractals is known to give
exact recursion relations. It is shown that these recursions commute with Lie groups representing continuous
symmetries of the discrete models. Each such symmetry reduces the order of the renormalization recursions by
one, resulting in a system of recursions with one fewer variable. Group trajectories are obtained from inverse
images of fixed and invariant sets of the recursions. A subset of the Laplacian finite difference models can be
mapped by change of boundary conditions and time dependence to a diffusion problem with closed boundaries.
In such cases conservation of mass simplifies the group flow and obtaining the groups becomes easier. To
illustrate this, the renormalization recursions for Green functions on four standard examples are decoupled. The
examples are~1! the linear chain,~2! an anisotropic version of Dhar’s 3-simplex, similar to a model dealt with
by Hood and Southern,~3! the fourfold coordinated Sierpin´ski lattice of Rammal and of Domanyet al., and~4!
a form of the Vicsek lattice. Prospects for applying the group theoretic method to more general dynamical
systems are discussed.@S1063-651X~97!11506-9#

PACS number~s!: 05.60.1w, 02.20.Fh, 63.20.Pw
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I. INTRODUCTION

The purpose of this paper is to demonstrate a group th
retic reduction of dynamical systems arising from real-sp
renormalization of Laplacian problems on regular fractal l
tices. Thus the wave mechanical or diffusion Green functi
for a variety of lattice types can be analyzed rather co
pletely. We define first the physical models and then
renormalization procedure. Finally we present the method
reduction with several examples.

The diffusion equation, the Schro¨dinger equation, and the
classical wave equation are each based on Laplacian op
tors. They relate to one another through changes in t
dependence and of boundary conditions. In simple ge
etries one can apply Lie theory to construct solutions of g
eral partial differential equations~PDEs! by making use of
continuous symmetries. However, since these must be s
metries of the boundary conditions as well as the differen
equations, the method is often less useful for regions w
very complicated boundaries.

A standard way to treat Laplacian-based PDEs in comp
spatial regions is to make the space coordinates discret
general terms, space is replaced by a graph serving
quadrature grid and the PDEs are replaced by a system
coupled ordinary differential equations, one for each no
so that time remains continuous but space becomes disc
Thus the original continuum problem is embedded in a cl
that also includes discrete lattice models that do not co
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versitádi Cagliari, piazza d’Armi, 09123 Cagliari, Italy.
551063-651X/97/55~6!/6741~12!/$10.00
o-
e
-
s
-
e
of

ra-
e
-
-

m-
l
h

x
In
a
of
,
te.
s
e-

spond to a unique continuum limit. We will take the discre
models to be more fundamental.

To generalize the Laplacian operator on a graph we t
the diffusion equation as a guide@1#. A vertex current rule
similar to Kirchhoff’s law is adopted to ensure conservati
of material. To relate bond currents to the node concen
tions we adopt a generalized Fick’s law. In this way o
constructs finite difference diffusion schemes based only
adjacency rather than geometrical distances or angles
comparing with the diffusion equation, these bond and ver
rules define difference Laplacians that can be transporte
other physical problems, such as wave propagation.

Once the problem is replaced by a system of differen
equations it can be reduced to linear algebra by Laplace
Fourier transform. Finding symmetry transformations
more difficult for the resulting difference equations, but a
ternative solution methods become available, such as d
numerical solution, graph theoretic methods, or real-sp
renormalization. In the latter method one finds recursion
lations ~usually approximate! for some set of properties o
one length scale in terms of the same properties on ano
length scale.

The fractal paradigm@2# is a natural one for classifying
scaling laws in structures where there is some form of s
similarity. General scaling theory of diffusion in fracta
structures is well developed. It is reviewed by Havlin a
Ben-Avraham@3#. It is sometimes argued@4–6# that regular
fractal lattices capture important aspects of critical perco
tion clusters, aerogels, or even amorphous solids w
avoiding the difficulty of true randomness. However, anoth
justification for studying regular fractals, in our view, is th
one can obtain many analytical results. Often problems
i-
6741 © 1997 The American Physical Society
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solvable on Euclidean lattices become solvable on reg
fractals. Exact solutions give insight different from that a
forded by the approximate solution of more realistic mode

The structures dealt with here are hierarchical graphs s
as the ones first introduced by Dhar@7#. Scaling properties
especially exponents, are known for a variety of regular fr
tal lattices @7,4#. The Laplacian-based problems, includin
the Schro¨dinger equation, the scalar wave equation, and
diffusion equation are the most relevant to the discuss
below. Domanyet al. and Rammal@8,9# renormalized the
Schrödinger eigenstates~or vibrational modes! of a Sierpiń-
ski lattice to obtain the energies~frequencies! and the wave
amplitudes. The spectrum consists of a Cantor set of eig
values corresponding to hierarchical wave functions, and
lated frequencies in the gaps of the Cantor set that co
spond to molecular localized modes. The latter are symm
decoupled with wave amplitudes that vanish outside a ci
of fixed radius. These spectral properties are conside
characteristic of finitely ramified fractals.

Rammal@9# and Tremblay and Southern@10# renormal-
ized the Green function generating function by decimation
order to study integral spectral properties of fractals. Ale
ander@11# introduced the transfer matrix renormalization
regular fractals. He demonstrated that a substantial simp
cation results from reduction of the Green functions w
respect to the point symmetries of the lattice. We revi
below certain aspects of Alexander’s synthetic method
which Green functions are expressed in a symmetry ada
basis projected from irreducible representations of the p
group. The transfer matrix method applied only to a small
of pivotal Green functions has been used by several aut
@12,13#. For the pivotal set one obtains recursion relations
the form of rational functions, which can be considered a
discrete dynamical system or as coupled difference eq
tions. Application of the method to transport problems
volving the diffusion equation has been presented in de
elsewhere@14#. Below we show how to reduce the order
these dynamical systems. In some cases the recursion
couple completely, resulting in explicit solutions.

The Lie theory of integration of differential equation
subsumes all other integration methods. Lie showed tha
known integration methods are equivalent to finding conti
ous groups that permute the solutions and then using t
groups to reduce the order@15–17#. For equations of secon
order or higher the group theoretic method also gives
algorithm for finding the groups. One problem with applyin
Lie theory to difference equations is that there is no syste
atic way to find a continuous symmetry, although once
group is found that commutes with the recursions it leads
a reduction of order, just as in the case of differential eq
tions.

The group theoretic reduction of systems of different
equations makes use of infinitesimal group generators. Th
are differential operators that when exponentiated reprod
the action of the group on functions of the basic variabl
An important tool is the prolongation of a generator, whi
reproduces the action of the group on functions that incl
also derivatives. In the approach taken by Maeda@18# and by
Quispel and Sahadevan@19# one extends prolongations t
include finite differences and obtains a functional equat
for the group generators. While this approach is usefu
ar
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principle, it is less useful than the one developed for integ
ing differential equations. We elect not to follow it, althoug
material given below on reduction of order produced by
continuous symmetry is taken mostly from Ref.@19#. It is
outlined here for completeness.

In the following sections we apply real-space renorm
ization to find Green functions for Laplacian-based equati
in difference form on several regular fractal lattices. W
show how the method of Lie can be used to reduce the o
of the recursion relations. In some cases this results i
solution for Green functions at specific values of the ene
parameter as functions of the lattice size.

II. LAPLACIAN PROBLEMS ON LATTICES

In this section we review the standard difference mod
for the diffusion equation, the scalar wave equation, and
Schrödinger equation while noting the relationships amo
them, particularly with regard to changes in boundary con
tions.

The recipe given above leads to a typical diffusion mo
of the form

d

dt
ci~ t !5(

j
ki j @cj~ t !2ci~ t !#1 f i~ t !, ~2.1!

where ki j is the microdiffusivity or bond conductance be
tween sitesi and j . The sourcef i(t) is added as a forma
convenience. We can reorganize the sum using

Ki j5ki j2d i j(
n

kin , ~2.2!

so that

d

dt
ci~ t !5(

j
Ki j cj~ t !1 f i~ t !. ~2.3!

The summation on the right side is the discrete analog o
integral operator with kernelK. Boundary conditions are in
cluded, as long as the index range covers the entire gr
~closed system!. In vector form,

d

dt
c~ t !5Kc~ t !1 f ~ t !. ~2.4!

Laplace transforming gives a linear algebraic equation

sĉ~s!2c~0!5Kĉ~s!1 f̂ ~s!, ~2.5!

or

ĉ~s!5G~d!~s!@ f̂ ~s!1c~0!#, ~2.6!

where entryGi j
(d)(s) of the resolvent

G~d!~s!5~s2K !21, ~2.7!

defined fors outside the spectrum of the matrixK, is a Green
function for diffusion fromj to i with mass conservation.

Sometimes it will be convenient to changeK by changing
only a few bonds. This happens when introducing exter
connections, deriving renormalization recursions, or tra
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55 6743GROUP THEORETIC REDUCTION OF LAPLACIAN . . .
forming between problems. Thus we find the following sta
dard result useful. SupposeGA5(z2A)21 and
GC5(z2C)21 for general complexz where C5A1B.
Simple manipulations yield

GC5GA1GABGC . ~2.8!

This relation is particularly useful whenB is sparse.
A difference model for the scalar wave equation, oft

applied to vibrations, differs from Eq.~2.1! in two ways. The
time dependence and boundary conditions are differ
When there are no external springs, the typical scalar vib
tion model is exactly as in Eq.~2.1!, except that the time
derivative is second order. Local displacementsui(t) replace
the concentrations,ki j becomes a spring constant, andf i(t)
is an external driving force. Thus

d2

dt2
ui~ t !5(

j
ki j @cj~ t !2ci~ t !#1 f i~ t !. ~2.9!

Since there are no external springs, no tension is mainta
and the structure has many zero-energy distortions or z
frequency modes. To supply external springs for anchors
can use a sparse matrixB that is zero except at the physic
boundary of the vibrating structure. Thus for the ancho
model

Ki j5ki j2d i j S (
n

kin1(8
b
kibD , ~2.10!

with the primed sum running over external springs attac
to site i . Whence in order to obtain this model from E
~2.2!,

Bi j52d i j(8
b
kib . ~2.11!

It is often useful to include a viscous damping term. For
wave equation a Fourier transform is more natural, so
analog of vector Eq.~2.5! for the damped, anchored vibra
tion model is

2v2û~v!22
iv

t
û~v!5~K1B!û~v!1 f̂ ~v!. ~2.12!

The damping timet is assumed the same throughout f
simplicity. The corresponding Green functions are entries

G~v !~v!52S v21
2iv

t
1K1BD 21

. ~2.13!

A difference model for the one-electron Schro¨dinger
equation~no magnetic field! is

i
d

dt
c i~ t !5(

j
Hi jc j~ t !. ~2.14!

The difference HamiltonianH is typically a Laplacian like
K defined in Eq.~2.10! with ki j5Ai j , which is 1 if i and j
are connected on the graph and 0 otherwise. Or else w
the wave function is expanded in a linear combination
localized basis functions,H can be a more general symme
-
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ric matrix. We put Eq.~2.14! in vector form and Fourier
transform from timet to the complex energyE1 ih. The
Green functions are then entries of

G~s!~E1 ih!5~E1 ih2H !21. ~2.15!

Thus each of the common Laplacian difference mod
leads to Green functions that are entries of

G~z!5~z2H !21, ~2.16!

where the complex parameterz signifies time dependence
For diffusionz5s, for the wave equationz52v222iv/t,
and for the Schro¨dinger equationz5E1 ih. The matrixH is
the Hamiltonian for the Schro¨dinger equation,K for diffu-
sion, andK1B for the wave equation. In any case, bounda
conditions can be adjusted using a boundary matrixB. Thus
it is possible to map back and forth between problems.

III. RENORMALIZATION AND POINT SYMMETRY
REDUCTION ON REGULAR FRACTALS

A trivial example is a linear chain of 2n sites as shown in
Fig. 1. Imagine constructing the chain in steps or generati
indexed byn. At generationn the lattice consists of 2n sites.
In the next step, two generationn chains are joined by a
bond to form a chain of length 2n11, which makes genera
tion n11.

Consider a Schro¨dinger problem on the linear chain. Fo
the HamiltonianH we take the adjacency matrixH5A.
@This is related toK1B of Eq. ~2.12! for the vibration prob-
lem when all spring constants are unity,ki j51, by
H5K1B12. Alternatively one could useH522A so that
the spectrum would extend from 0 to positive energy.# The
Green functions of interest are entries ofG(z)5(z2A)21.

The renormalization method is discussed in detail in Re
@12,13,6,14#. We illustrate it for the case of the linear chai
The basic tool is Eq.~8!. Consider the process of construc
ing generationn11. LetGA be the set of Green functions o
the two disconnected pieces of generationn, and letB pro-
vide the bond to connect them. Thus, referring to Fig.
Bi j5d i3d j41d i4d j3, soB has only two nonzero entries. Th
pivotal Green functions arex5GA11(z), y5GA31(z) on gen-
eration n and X5GC11(z), Y5GC21(z) on generation
n11.

From Eq.~2.8!,

X5x1yGC41~z!, Y5yGC31~z!,

GC31~z!5y1xGC41~z!, GC41~z!5xGC31~z!. ~3.1!

These yield the recursions

FIG. 1. Recursive construction of linear chain. Two copies
generationn are connected to form generationn11. Numbers in-
dex connection sites.
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X5x1
xy2

12x2
, Y5

y2

12x2
. ~3.2!

For any lattice constructed by attaching generationn blocks
together to make generationn11, one obtains similar recur
sions for a set of pivotal Green functions.

Alexander@11# showed that a considerable simplificatio
results from transforming to a point symmetry adapted ba
We will not use all of his machinery, but we will make us
of the basic idea. Letê1 and ê2 be basis vectors with com
ponentsê1i5d i1, ê2i5d i2 in the space of the vectorc of Eq.
~2.14!. The point group of the structure has two operatio
the identity and reflection. The two irreducible represen
tions are even~character 1! and odd~character21). A sym-
metry adapted basis is prepared using the van Vleck mac
@20#. In this simple case

êeven5
1

A2
~ ê11ê2!, êodd5

1

A2
~ ê12ê2!. ~3.3!

The point symmetrized Green functions are

p5êeven•GCêeven5x1y,

q5êodd•GCêodd5x2y. ~3.4!

Using these coordinates, the recursions become

P5p2
~12p!~p2q!

22p2q
, Q5q1

~p2q!~11q!

21p1q
. ~3.5!

Evidently the linesp51 andq521 are invariant under
the mapping defined by Eq.~3.2!. These lines are related t
mass conservation in the diffusion problem, as we shall
The line q5p is fixed because in the limit of a very lon
chain there is no propagation from one end to the oth
either by classical diffusion or electron quantum mechan
so iteration of Eq.~3.2! leads toy50 for almost all energies

Figure 2 shows a lattice model for anisotropic diffusi
on a 3-simplex lattice. Dashed lines correspond to small

FIG. 2. Anisotropic 3-simplex. Sites 1, 2, and 3 are connect
points.
s.

,
-

ne

e.

r,
s,

f-

fusivity ki j5k and solid lines correspond toki j51. Hood
and Southern studied spectral properties on a model sim
to this @21#. Recently Adroveret al. have studied scaling
crossover for diffusion in this model@22#. We consider the
Schrödinger equation for definiteness withH the generalized
adjacency matrix,Ai j being 1 for strong bonds,k for weak
bonds, and zero otherwise. The lower corner sites are 1
2 and the upper corner is 3. Due to anisotropy, four piv
are necessary,x5G11(z), y5G21(z), u5G33(z), and
v5G31(z). The recursions are obtained as in the case of
chain by considering the connection of three blocks toget
via two strong and one weak bond. However, the recursi
obtained in this way are a bit complicated and contain
parameterk. To simplify them and scalek out, we make use
of the symmetrized coordinates

p5x1y, q5x2y, r5uk, s5vAk. ~3.6!

Then the recursions become

P5q1
~12pq!~p2q2pr1qr12s2!

22p22pq22r1p2r1pqr22ps2
,

Q5q1
~11q!~12q!~p2q1pr2qr22s2!

22pq1q212r2pqr2q212qs2
,

~3.7!

R5r1
2s2~p1q2pr2qr12s2!

22p22pq22r1p2r1pqr22ps2
,

S5
s~p2q2pr1qr12s2!

22p22pq22r1p2r1pqr22ps2
.

Again they comprise a mapping defined by a set of ratio
functions, i.e., ratios of polynomials, and certain fixed ma
folds are evident.

Figure 3 illustrates construction of the fourfold coord
nated Sierpin´ski lattice of Refs.@8# and @9#. Consider diffu-
sion. To apply the same kind of renormalization directly
this case requires removing the corner sites as shown in
3~b!. Thus there are six distinct connection points and fi
independent Green functions per generation. With cor
vertices as indicated in the figure, a pivotal set
x5G11(z), y5G32(z), t5G21(z), u5G41(z), and
v5G31(z). A more convenient set consists of the symme
adapted variables@11#

p5x1t, q5x2t, r5u1v,
~3.8!

s5u2v, m5u12v1y.

n

FIG. 3. Fourfold coordinated Sierpin´ski lattice showing removal
of corner sites to facilitate writing recursions.
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The recursions are

P5p1
m2~124 p!

~122m24 p!~11m24 p!
,

Q5q1
~m22r !2

11m24 p
,

R5
m~2m21r22mr24pr !

~122m24p!~11m24p!
, ~3.9!

S52
~m22r !r

11m24p
,

M5
m2~112m24 p!

~122m24p!~11m24p!
.

In this case, since the corners have been removed, the pi
Green functions are not the ones for the closed syst
Rather they are the ones appropriate for attaching a rese
at each connection site.

Figure 4 shows a Vicsek lattice@23#. Dynamical problems
on this lattice have been treated by several authors rece
in connection with modes of a fractal drum@24,25#. Diffu-
sion of material and of vibrational energy on this lattice a
discussed elsewhere@26#. We first consider diffusion. Pivota
Green functions arex5G11(z) andy5G21(z), where 1 and
2 are two distal corners. The recursions in (x,y) become
@26#

X5x2
y2~112x12y!

~112x2y!~112x13y!
,

Y5
y3

~112x2y!~112x13y!
. ~3.10!

Since the Vicsek lattice is not a rigid structure, the po
symmetry reduction is less profitable in this case. As us
the recursions are rational, and the liney50 is fixed.

The examples above are typical renormalization recurs
relations for Laplacian dynamical problems. Each one can
iterated to obtain Green functions at any desired genera

FIG. 4. Vicsek lattice.
tal
.
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t
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e
n.

It is useful to think of the recursion formulas as mappings
the pivot space into itself, thus defining a discrete dynam
system. In this sense they are systems of nonlinear differe
equations. A solution to the difference equations in each c
would be formulas giving the Green functions at generat
n as explicit functions ofn. As we shall see below, we ar
able to obtain an infinite number of such solutions in ma
cases. These exact solutions are obtained at a certain C
set of initial conditions~Cantor set inz). In the ideal situa-
tion one could find formulas for the pivots as functions
both n and z for any z. We will not be able to do this, in
general, because the Cantor set of exactly solvablez values
is determined by the chaotic dynamics of an irreducible
of maps. In the case of the linear chain, the irreducible
contains only the solvable~Tchebyshev! case of the qua-
dratic polynomial map. Therefore the map is integrable a
the problem is completely solvable.

IV. LIE GROUPS AND REDUCTION OF ORDER

Tools presented in this section are used in the follow
one to decouple recursion equations. First we show wha
means for a dynamical system to admit a continuous gro
We show that when the system is expressed in terms of
canonical variables of the group its order is reduced. In
following section we will consider strategies for finding su
a group.

Consider a discrete dynamical systemS of the generic
form

X5 f ~x,y,z!, Y5g~x,y,z!, Z5h~x,y,z!, ~4.1!

with x5xn andX5xn11, etc., as usual. These recursions a
also autonomous difference equations, meaning thatn does
not appear explicitly. We consider the action of a continuo
one-parameter groupG of transformations acting on the var
ables. Thus (x,y,z) are replaced by (x̃ , ỹ , z̃) such that

x̃5u~x,y,z,a!, ỹ5v~x,y,z,a!, z̃5w~x,y,z,a!.
~4.2!

The substitutions form a group with respect to compositi
For the group operation the parameters add so thata50 is
the identity and2a indexes the inverse element. The fun
tions u(x,y,z,a), etc. are continuous ina. Quispel and Sa-
hadevan@19# point out that although the systemS is autono-
mous, the group transformationsG may depend onn in the
most general case. However, for the examples below
need not include then dependence. Hence the discussi
simplifies.

To say the systemS admits the groupG is to say that it
does not matter whether one makes the substitution Eq.~4.2!
before or after applying the recursions Eq.~4.1!, the result is
the same. In other wordsu(X,Y,Z,a)5 f ( x̃ , ỹ , z̃), etc., or,
in full detail,
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u„f ~x,y,z!,g~x,y,z!,h~x,y,z!,a…

5 f „u~x,y,z,a!,v~x,y,z,a!,w~x,y,z,a!…,

v„f ~x,y,z!,g~x,y,z!,h~x,y,z!,a…

5g„u~x,y,z,a!,v~x,y,z,a!,w~x,y,z,a!…, ~4.3!

w„f ~x,y,z!,g~x,y,z!,h~x,y,z!,a…

5h„u~x,y,z,a!,v~x,y,z,a!,w~x,y,z,a!….

If we think of both the group elements ofG defined in Eq.
~4.1! and the recursionsS of mappings, we may say equiva
lently thatG commutes withS or thatS is invariant under
G. The meaning is that each group elementga takes each
solution of the difference equations into some solution~pos-
sibly the same!.

Interest in finding a group admitted by a given syste
stems from the fact that the group can be used to reduce
order of the system. The procedure is first to find canon
coordinates ofG. WhenS is transformed into canonical co
ordinates, one of the recursions equations decouples. By
nonical variables of the group we mean a set (a,b,c) in
terms of which the action analogous to Eq.~4.2! becomes

ã5a, b̃5b, c̃5c1a. ~4.4!

Making use of this simplification in Eq.~4.3! one has

A5F~a,b,c1a!, B5G~a,b,c1a!,
~4.5!

C1a5H~a,b,c1a!,

whereF(a,b,c), etc., are defined by changing coordinates
Eq. ~4.1!. Since Eq.~4.5! should hold for alla, one can set
a52c, so in fact the recursions fora andb do not depend
on c and the recursion forc is decoupled:

A5F~a,b,0!, B5G~a,b,0!, C5c1H~a,b,0!. ~4.6!

The solution forc is just a summation of a function of th
solutions fora andb.

The method of finding canonical variables in this case
straightforward and can be found in Ref.@16#. In essence it
differentiates (ã , b̃ , c̃ ) with respect toa in two different
ways, one explicitly using Eq.~4.4! and one via the chain
rule from ã5 ã( x̃ , ỹ , z̃), etc. Settinga50 gives a system o
three first order linear PDEs fora, b, andc. In many cases
they can be solved quite easily.

The reader can see that the difficult part is to find
group. We know of no systematic way for general dynami
systems. However, for systems arising from renormaliza
of Laplacian lattice problems the strategies we present in
next section have been found quite successful.

V. FINDING GROUPS

The method depends on the relationship between inv
ant sets ofS and group trajectories ofG. We begin with
informal comments on invariant sets, then using the
amples we show how groups can be found from circ
theory, and how to use them to reduce the order of the
he
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cursions. In this way electric circuit theory integrates t
Schrödinger problem on a lattice.

A substitution groupG of the form Eq.~4.2! defines a set
of mappings of the pivot space into itself, one mapping
eacha value. Letga be the group element corresponding
the particular valuea. In this senseG is on an equal footing
with the dynamical systemS, Eq. ~4.1!. The two important
differences are that each transformation ofG is one to one,

and the image (x̃ , ỹ ) of a given point (x,y) is a continuous
function ofa, while of course neither of these two properti
needs be true for the action ofS. We will use the following
observations.

Let P be a fixed point ofS. Supposega takesP into
P(a). SinceG commutes withS, P(a) is also a fixed point
of S. If there is a neighborhood ofP that contains no othe
fixed point ofS, thenP must also be a fixed point ofG, since
P(a) must tend toP continuously asa→0. The only way
this can happen ifP is isolated is thatP(a) is actually the
same asP for all a near 0. Thus an isolated fixed point o
the system must also be a fixed point of the group.

An invariant set ofS is a setT, whichS takes into itself.
In other words, each point inT maps by recursions into
another point inT. It follows that if the curveP(l) is in-
variant under the action ofS, where l parametrizes the
curve, then each element ofG must takeP(l) into a fixed
point or some invariant curve. This may be either the sa
or another invariant curve. If it is the same one for alla, then
the curve is also a group trajectory. Thus in particular a fix
line of the recursion map must be a group trajectory.
P(l) does not go into the same curve, thenS must have a
higher dimensional invariant setP(a,l), whereP(a,l) is
the image underga of P(l). In the latter case, the grou
permutes invariant curves within the subsetP(a,l) of T.

Next suppose pointQ is in the preimage of an isolate
fixed pointP of S. SinceS admitsG, the group takesQ into
Q(a), which must be in the preimage with respect toS of
P(a). Thus a one-dimensional preimage of an isolated fix
point of the system comprises a set of group trajectories c
nected together end to end by group fixed points. In
simplest case, it is a single trajectory with fixed points
infinity.

Finally, supposeP(a) is a group trajectory, and suppos
S takesP(a) into another curveQ(a). Because the group
commutes with the dynamical system,Q(a) is also a group
trajectory. We conclude that the recursion relations map
trajectories of the group into one another.

The existence of curves permuted by the renormaliza
recursion relations has been reported for a number of lat
problems@27–29#. To discover an invariant family of curves
and hence perhaps a group, one can concentrate first o
fixed and invariant manifolds of the renormalization m
S. It turns out that the connection to the renormalization o
resistor network becomes important. A detailed treatmen
fractal resistor networks is given by Adler@30#.

Consider the recursion Eqs.~3.5! for Schrödinger Green
functions (x,y) for the end points of a linear chain. We dem
onstrate the reduction process for this simple example fi
The more difficult lattice examples presented below follo
the same general pattern.

The connection to diffusion is straightforward. Begin wi
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diffusion in a completely closed chain withK as in Eq.~2.2!.
Now attach the ends of the chain at sites 1 andN to reser-
voirs of concentrationca andcb , respectively, using bond
of diffusivity 1. The equation is

d

dt
ci~ t !5(

j
Ki j cj~ t !1d i1„ca2c1~ t !…1d iN„cb2cN~ t !….

~5.1!

UsingH5K1B with Bi j52d i1d j12d iNd jN gives

d

dt
ci~ t !5(

j
Hi j cj~ t !1d i1ca1d iNcb , ~5.2!

whereH is the same as in the Schro¨dinger problem leading
to Green functions recursions, Eqs.~3.2!. The remaining res-
ervoir terms act as sources. Thus one finds the following
the end-point concentrations in the Laplace domain:

ĉ1~s!5x~s!ca /s1y~s!cb /s,
~5.3!

ĉ2~s!5y~s!ca /s1x~s!cb /s.

From the circuit analogy, the electrical resistance from e
to end should be the steady-state limit (t→`) of the ratio of
Dc(t)/I (t)5@c1(t)2c2(t)#/@ca2c1(t)#, where I (t) is cur-
rent flowing in through the external bond attached to site
Since for Laplace transforms the limt→` f (t)5 lims→0s f̂(s),
the resistance is

r ~ca ,cb!5
~ca2cb!@x~0!2y~0!#

ca@12x~0!#2cby~0!
. ~5.4!

But, the resistancer (ca ,cb) should not depend onca and
cb . In particular, the current should be independent of
sumca1cb . Thus for current conservation in the static lim

f1512x2y50 , ~5.5!

and hence

r5~122y!/y. ~5.6!

The constraint Eq.~5.5! is one of the desired invariants
Point (x,y) initially on the line f150 corresponds to a
Kirchhoff steady state, which iterates into another po
(X,Y) on the same line. To see this, factorf1(X,Y) substi-
tuting from Eqs.~3.2!:

12X2Y5
~12x1y!~12x2y!

12x
. ~5.7!

This factorization computes the preimage of the zero se
f1. Sincef1(x,y) dividesf1„X(x,y),Y(x,y)…, a point ini-
tially on f1(x,y)50 remains there.

The preimage off1 contains also

f2512x1y50 . ~5.8!

The linef250 is invariant under any group admitted by th
recursions, but not under the recursions themselves.

The pivotal Green function recursions Eq.~3.5! contain
also the recursion for resistance of the chain as their s
r

d

.

e

t

of

tic

limit. For f150 theY recursion depends only ony, namely
Y5y/(22y). Using Eq.~5.6! to change variables gives th
expected resistor recursionR52r11. Hence current conser
vation in the steady state gives both an invariant line and
static scaling. In the anisotropic simplex example the cor
sponding result will appear less trivial.

The dynamical systemS represented by recursion Eq
~3.2! has a line of fixed points aty50 and another invarian
line x50. One finds another invariant line,

f3511x2y50 , ~5.9!

and in its preimage

f4511x1y50 . ~5.10!

If S admits a groupG then the lines comprising the zero se
of x, y, f1, f2, f3, andf4 must be trajectories ofG. The
systemS also has fixed points at̀. G has fixed points wher-
ever two trajectories intersect so (0,0), (1,0), (21,0),
(0,1), and (0,21) are fixed byG in the finite plane. An
efficient strategy is the following. Taking advantage of t
connection between the Schro¨dinger problem and diffusion
transform from the wave mechanical Green functions (x,y)
to Green functions (xc ,yc) for diffusion in the completely
closed chain. The recursions for (xc ,yc) may be expected to
simplify since material conservation is taken into accou
automatically. Using the general Eq.~2.8! with B as defined
above, the coordinate change is

xc5
x2x21y2

~12x1y!~12x2y!
,

~5.11!

yc5
y

~12x1y!~12x2y!
,

in terms of which the recursions are

Xc5xc2
yc
2

112xc
, Yc5

yc
2

112xc
. ~5.12!

There are no isolated fixed points. The lineyc is fixed.
The mass conservation line is now at`, and the inverse
image of ` is the line 112xc50. The linesyc50 and
112xc50 must be trajectories of any groupG admitted by
the (xc ,yc) recursions. These intersect at (21/2,0). By con-
tinuing to take inverse images, one can construct an un
ited number of group trajectories. However, the only int
section in the finite plane of any pair of these trajectories is
(21/2,0). This is a fixed point of any group that permut
solutions of the renormalization map for (xc ,yc).

The next step is to translate coordinates to put the gr
fixed point at the origin. Takingxf5xc11/2 andyf5yc ,

Xf5
2xf

22yf
2

2xf
, Yf5

yf
2

2xf
. ~5.13!

In this example the new recursions are homogeneous, so
group flow is radial. The recursions admit the group

x̃ f5eaxf , ỹ f5eayf , ~5.14!
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with canonical variablesb5xf /yf , c5 lnyf . The decoupled
recursions are finally

B52b221 , C5c2 ln~2b!. ~5.15!

Notice that the selection of canonical coordinates is sim
at this point to selecting dimensionless combinations
physical numbers. We seek dimensional or isobaric grou

The solutionb5 f (uo
2n), where f ( •) is cos(•) when b2,1

and cosh(•) for b2>1, is well known. The solution forc is a
summation. Using the coordinate transformations fr
(a,b) back to (x,y) solves the original Scro¨dinger problem.

There are many ways to solve for Laplacian Green fu
tions on a linear chain@32–34#. It is no surprise that an exac
solution is possible. The point in this case is that the st
leading to the decoupling, i.e., all steps but the last, w
equally well on a wider class of fractals. The result is that
each case the order of the recursions is reduced. Often
leads to a very complete analysis of the underlying latt
problem.

In summary, the steps are as follows:~1! transform the
problem to a diffusion model with closed boundary con
tions. ~2! Obtain invariant manifolds of the group as inver
images of fixed sets of the recursions. The intersection
these will contain group fixed points. Typically the interse
tion is a single fixed point.~3! Move the fixed point to the
center of coordinates.~4! Look for products of powers of the
new coordinates to be invariant under the recursions. Th
form theb’s of a set of canonical variables, i.e., the ones l
fixed by the group flow. Each distinct choice of the invaria
products gives another group.~5! A canonicalc for each
group, i.e., a coordinate along the flow is the logarithm
any convenient variable used to form theb products.

We illustrate by applying the method to each of the th
remaining lattice examples introduced above.

The symmetrized Green functions for the Schro¨dinger
equation on the anisotropic simplex Fig. 2 are defined in E
~3.6! and renormalize according to Eqs.~3.7!. These pertain
to the case where the HamiltonianH is just the adjacency
matrixA. To obtain a diffusion model, letz5s121k be the
argument in the general resolventG(z) of Eq. ~2.16!. To
close the system with respect to loss of material at the co
points requires a boundary transformati
Bi j5d i1d j11d i2d j21kd i3d j3. The rescaled Green function
corresponding to (p,q,r ,s) in the case of diffusion in the
closed system are

pc5
p2pr12s2

12p2r1pr22s2
,

qc5
q

12q
,

~5.16!

r c5
r2pr12s2

12p2r1pr22s2
,

sc5
s

12p2r1pr22s2
.

The recursions become
r
f
s.

-

s
k

his
e

-

of
-

se
t
t

f

e

s.

er

Pc5qc1
~pc2qc!~11pc1qc!

213pc1qc
,

Qc5qc1
~112qc!~pc2qc12pcr c22qcr c24sc

2!

21pc13qc14r c12pcr c16qcr c24sc
2 ,

~5.17!

Rc5r c2
4sc

2

213pc1qc
,

Sc5
~pc2qc!sc
213pc1qc

.

The two-dimensional fixed plane defied by setting bo
pc2qc andsc to zero contains all finite fixed points of th
dynamical system Eqs.~5.17!. The inverse image of̀ ob-
tained by factoring the reciprocals of Eq.~5.17! intersects the
fixed plane at the unique point (21/2,21/2,21/2,0). All
inverse images one can construct contain this unique poin
common. It is a candidate for a group fixed point. Thus
define new coordinates centered at the fixed point. In te
of these the recursions are

Pf5
pf~pf13qf !

3pf1qf
,

Qf5
qf~3pfr f1qfr f26sf

2!

pfr f13qfr f22sf
2 ,

~5.18!

Rf5
3pfr f1qfr f24sf

2

3pf1qf
,

Sf5
~pf2qf !sf
3pf1qf

.

To find the possible isobaric groups, we apply dimensio
analysis. Clearlyqf and pf must have the same isobar
weight while sf can have different weight. The weight o
r c is determined by the choices of weights forpc and sc .
Thus the recursions admit the scale transformations

p̃ f5eapf , q̃ f5eaqf , r̃ f5e2b2ar f , s̃ f5ebsf .
~5.19!

Equation ~5.19! defines the product of operations of tw
commuting groups, one parametrized bya and the other by
b. Thus it is possible to define two scale-independent pr
ucts,a andb, and two other canonical variables by

a5
sf
2

pfr f
, b5

pf
qf
, c5 lnS sfr f D , d5 ln sf . ~5.20!

The decoupled system is finally
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A5
a~12b!2

~31b!~113b24ab!
,

B5
b~31b!~31b22ab!

~113b!~113b26ab!
,

~5.21!

C5c1 lnS b21

113b24abD ,
D5d1 lnS b21

113bD .
Thus, because the recursions admit two groups, the ord
reduced by two.

Equations~5.21! may not reduce further as they represe
renormalization of the physical parameterss andk. The ini-
tial values for (a,b) of Eqs. ~5.21! depend onk and on
z5s121k. If we identify (a,b) after one iteration of Eq.
~5.21! with initial conditions expressed in terms of newk and
z values we generate recursions:

K5
k~z1k21!~z1k11!

~kz2k211!~kz1k211 !
,

~5.22!

Z5
~z22k223!~z1k!

~kz1k211!
2K.

The only z-independent fixed points arek50 and k51,
which represent the linear chain and isotropic simplex lim
The line 22z2k50 is invariant, meaning the static lim
s50, or the edgeE521k of the energy spectrum in th
Schrödinger problem, corresponds from one generation
the next. Using this fact one can find the spectral dimens
@35#.

Renormalization equations~5.21! or ~5.22! derive from
consideration of diffusion. But any such recursions ap
immediately to the quantum mechanical or vibrational mo
els as well. The change of time dependence is straight
ward and the chance of boundary conditions via any bou
ary matrixB that applies only to the connection points on
generates a coordinate change, as we have seen, from o
of pivotal Green functions to another. Thus the solutions
transported back to the original Schro¨dinger problem using
the coordinate changes defined in Eqs.~3.6!, ~5.16!, and
~5.20!. The symmetry groups are conveniently found for t
diffusion boundary conditions because of the connection
static scaling of electrical resistance. It is worth deriving t
steady-state or static limit in the anisotropic lattice where
is less trivial than for the chain.

To obtain the resistance recursions for the anisotro
model, start with the diffusion problem for the closed syst
and then attach reservoirs at sites 1 and 2 with concen
tions ca and cb , respectively. This requires a differen
change in boundary conditionsBi j8 52d i1d j12d i2d j2 and
introduces source termsd i1ca /s1d i2cb /s. If ( xb ,yb) are the
Green functions after correcting the boundary, the electr
resistancer 12 between corners 1 and 2 is

r 125
xb~0!2yb~0!

12xb~0!
~5.23!
is
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and the current conserving constraint is

f15~12p!~12r !22s250. ~5.24!

From Eqs.~5.16! this verifies that the current conservin
states are at̀ in pc , r c , and sc . Computingr 13 requires
reservoirs attached at sites 1 and 3, so yet another boun
change is required. If we subscript the Green functions w
a in this case,

r 135
xa~0!2kva~0!

12xa~0!
. ~5.25!

The current constraint depends onk in this case even though
k has been scaled out of the recursions. In terms
(p,q,r ,s) the conservation condition is

f25k~12r !22~12p!50 . ~5.26!

Another way to obtain the constraints is to attach reserv
of concentration 1 to all the corner sites at once. This res
in

f3512p2sAk50 ~5.27!

and

f45~12r !Ak22s50 . ~5.28!

f1 is found on eliminatingk betweenf3 and f4 while
eliminating s givesf2. Equations~5.24! and ~5.26! can be
seen as requiring simultaneous conservation of charge~or
mass! and anisotropyk. We needk to be a constant of the
motion so that quantities on successive generations cont
to refer to a model with the samek value. When we try to
visualize the recursions in terms of renormalizingz andk in
Eqs.~5.22!, their coupled evolution becomes inconvenien

Modulo f350 and f450 the recursions forp and q
decouple in Eqs.~3.7!:

P5q1
~12q!~12pq!

22p~11q!
,

~5.29!

Q5q1
~12q!~11q!@~12p!~12q!2k~p1q!#

~21q!~12p!~12q!2k~22pq2q2!
,

and the resistances in terms of Green functions ats50 sim-
plify to

r 125
q

12q
, r 135

k~p1q22pq!22~12p!

2k~12p!~12q!
.

~5.30!

Thus, changing coordinates from (p,q) to (r 12,r 13) one ob-
tains the resistor recursions

R125r 121
~112r 12!~122kr1212kr13!

112k~11r 121r 13!
,

~5.31!

R135r 131
~112r 12!@11k~112r 13!#

112k~11r 121r 13!
.
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The latter equations can be verified by circuit theory. T
derivation shows how mass conservation locates an inva
curve. It can be found by enforcing current conservation
one of several ways. One is to require that resistance
depend on reservoir concentrations. Another is to attach
ervoirs of equal concentration to the model with open bou
ary conditions at all external sites~Schrödinger or vibration
problem! and require the same concentration at each co
in the long-time limit. The most efficient way is to transfor
to closed~diffusion! boundary conditions. A group trajector
is then obtained as the inverse image of`. By clearing an
invariant curve of the dynamical system from the fin
plane, the latter procedure usually simplifies the group flo
Often only a line or plane of fixed points of the system
mains, and the set where the inverse image of infinity in
sects this will locate a fixed point of the group.

In the anisotropic example, the symmetry group is Ab
lian. An example of a non-Abelian group is the one admit
by the recursion Eqs.~3.9! belonging to the lattice of Fig. 3
In such a case the question of solvability arises. WhenS
admits anr -parameter group, the most obvious strategy is
apply the reduction outlined in Sec. IV using a on
parameter subgroup, thus reducing the order by one. But
one must ask whether the new system still admits a grou
r21 parameters. The criterion for a full reduction byr vari-
ables is that the original group be solvable@17#. The reduc-
tion of order via a solvable group is discussed by Mae
@18#.

For the system of equations~3.9! the mass-conservatio
hyperplane does not appear at infinity. If one attaches re
voirs of equal concentrationc0 to each connection site, the
the saturation condition is seen to imply a zero of eith
f15x1y1t1u12v21 or f25p1m21. The large-size
limit is a zero either of each ofu, v, andt simultaneously or
else ofr , s, and 1/m simultaneously. Taking inverse image
we can construct enough group invariant sets to determ
three one-parameter groups, each of which commutes
the recursions, namely, the groups generated by

L15m
]

]m
2S 142pD ]

]p
1q

]

]q
1r

]

]r
1s

]

]s
,

L25
]

]q
, ~5.32!

L35m
]

]m
2S 142pD ]

]p
1Sm4 1

r

2D ]

]r
2Sm4 2

r

2D ]

]s
.

When exponentiated, the infinitesimal generators Eqs.~5.32!
reproduce the action of the groups. Together, they genera
solvable three-parameter group with Lie algebra charac
ized by the single nonvanishing commutator@L2 ,L1#5L2.
With the generators one can get canonical variables, as
scribed by Stephani@17,16#,
e
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a5 lnFmS 12
2r

mD 2G ,
b5 ln m, c5 ln~m22r12s!, ~5.33!

d5q, f5
124p

m
.

The reduced recursions are

A5a1 lnS 1

f11D1 lnS f22

f12D ,
B5b1 lnS 1

f11D2 lnS f22

f12D ,
C5a1 lnS 1

f11D , ~5.34!

D5d1
ea

f11
,

F5~ f23! f .

Thusa, b, andc decouple,f satisfies an independent recu
sion in one variable, andd is a sum involving the orbits of
f anda. Recursionf is related to eigenvalue recursion on
can find from decimation@8,9#.

Finally, consider diffusion on the Vicsek lattice@23# of
Fig. 4 with closed boundary conditions. The diffusion ope
tor is not the adjacency matrix in this case and the trans
mationB connecting the open and closed diffusion mod
does not act only at the connection points, so it will not be
easy matter to map the solution from the closed case
dressed here to the open one more closely related to vi
tional models. Transverse vibrations on a Vicsek lattice w
general boundary conditions have been studied recently@25#.

The renormalization of (x,y) is given by Eqs.~3.10!.
Fixed points in the finite plane comprise only the lin
y50. The inverse image of̀ is the union of

f15112x2y50 , f25112x13y50 . ~5.35!

These three lines must be group trajectories. They interse
(21/2,0). Moving the origin to this point byxf5x11/2,
yf5y one has the recursions

Xf5
4xf

314xf
2yf25xfyf

222yf
3

~2xf2yf !~2xf13yf !
,

~5.36!

Yf5
yf
3

~2xf2yf !~2xf13yf !
.

The equations are homogeneous, i.e., they admit unif
dilation, thus canonical variables areb5xf /yf andc5 lnyf .
The decoupled recursions are

B54b314b225b22 , C5c2 ln@~2b21!~2b13!#.
~5.37!
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The b recursion relates the Cantor-set portion of the
genvalue spectrum~see Ref.@8#!. To see this, use the initia
conditionx5y51/s. The eigenvalues with weight at the di
tal site of the lattice are the singularities of the Green fu
tions. This portion of the spectrum consists of singularities
(x,y) at generationn11 caused by singularities of (x,y) at
generationn. Using the initial values and the definition of th
coordinateb gives ans recursion

S5s~31s!~51s!, ~5.38!

meaning that ifS belongs to the Cantor set, the three roo
sp(S), pP$1,2,3% also belong to the Cantor set. The spect
minimum is s5242A2 and the spectral dimension ob
tained fromS;15s at small s is ds52ln 5/ln1551.189,
which is a standard result@25#. Notice that although a gen
eral solution of theb recursion in Eq.~5.37! is not known,
one can still find an infinite set of solutions as explicit fun
tions of n @29#. Suppose, for example,s is such that the
initial value b,0 belongs to a 3-cycle with membe
$b15b0 ,b2 ,b3%:

C3n52nS (
m51

3

ln@~2bm21!~2bm13!# D ,
C3n115C3n2 ln@~2b121!~2b113!#, ~5.39!

C3n125C3n112 ln@~2b221!~2b213!#.

As special as these solutions seem, they have been show
correspond to a set of transmission resonances in the ele
propagation problem@29,31#.

VI. SUMMARY

We have shown how to find Lie groups that commu
with the real-space renormalization of dynamical proble
on regular fractals. Each such group reduces the numbe
variables in the recursions. Thus a partial and sometime
total decoupling can be obtained. The procedure has b
demonstrated with four examples: diffusion~or vibrations or
electron propagation! on the line, an anisotropic 3-simplex,
fourfold coordinated Sierpin´ski lattice, and a Vicsek lattice
It has also been successful for a dozen or so other la
types, many of which are actually multiparameter families
lattices@29#.

One must admit that the recursion equations dealt with
the preceding sections come from a class of difference e
tions with rather special properties. One reason for choos
regular fractal problems is that they renormalize exactly. T
difference equations correspond, however abstractly,
-

-
n

s
l

to
ron

s
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a
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f

n
a-
g
e
to

physical problems that carry with them some deep symm
tries. To solve approximate renormalization equations
actly by finding groups they admit would be of less intere
certainly. We suspect such a project would also be less lik
to succeed. However, the uniform dilation symmetry fou
in each example above, as well as most others, is a man
tation of the fact that scaling each resistor in a network
l scales the entire network resistance byl. It is related
clearly to current conservation. It does not go away wh
symmetry of the lattice is reduced.

The techniques introduced above do not appear to w
well for statistical dynamical problems on hierarchical la
tices, even though the latter renormalize exactly and ough
admit groups relating to inflation. Such statistical models
clude spin Hamiltonians, percolation, self-avoiding walk
etc. The recursions are often polynomial. There is no m
current to conserve, the inverse image of` is `.

However, for dynamical systems where a symmetry gro
exists, the strategy of Sec. V may be of use for finding it
is global as opposed to the method proposed by Quispel
Sahadevan@19# in which one attempts to construct a seri
solution of the group generator about a fixed point of t
difference equations. With luck one can hope to sum
series and then integrate the resulting generator to ob
group coordinates. Both methods require luck, and they
to a large extent complementary to one another.

The steps to follow for finding a group that commut
with renormalization of a Laplacian based difference sche
are summarized already in Sec. V. For more general dyna
cal systems the part one might hope to generalize consis
the following. First find fixed or invariant sets of the diffe
ence equations. These must also be invariant sets of
group flow. When the recursions consist of rational fun
tions, both invariant sets and their inverse images can
found by factorization, as we have illustrated. The inve
image must also be invariant under the group. With enou
examples of group invariant sets, one can take intersect
to find trajectories and fixed points. These are apt to be
value for constructing a group. Once found, a continuo
symmetry group reduces the order of the difference eq
tions as discussed in Sec. IV.
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