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Discrete forms of the Schdinger equation, the diffusion equation, the linearized Landau-Ginzburg equa-
tion, and discrete models for vibrations and spin dynamics belong to a class of Laplacian-based finite differ-
ence models. Real-space renormalization of such models on finitely ramified regular fractals is known to give
exact recursion relations. It is shown that these recursions commute with Lie groups representing continuous
symmetries of the discrete models. Each such symmetry reduces the order of the renormalization recursions by
one, resulting in a system of recursions with one fewer variable. Group trajectories are obtained from inverse
images of fixed and invariant sets of the recursions. A subset of the Laplacian finite difference models can be
mapped by change of boundary conditions and time dependence to a diffusion problem with closed boundaries.
In such cases conservation of mass simplifies the group flow and obtaining the groups becomes easier. To
illustrate this, the renormalization recursions for Green functions on four standard examples are decoupled. The
examples arél) the linear chain(2) an anisotropic version of Dhar’s 3-simplex, similar to a model dealt with
by Hood and Southert3) the fourfold coordinated Sierpéhi lattice of Rammal and of Domaret al., and(4)

a form of the Vicsek lattice. Prospects for applying the group theoretic method to more general dynamical
systems are discussd&1063-651X%97)11506-9

PACS numbg(s): 05.60+w, 02.20.Fh, 63.20.Pw

[. INTRODUCTION spond to a unique continuum limit. We will take the discrete
models to be more fundamental.

The purpose of this paper is to demonstrate a group theo- To generalize the Laplacian operator on a graph we take
retic reduction of dynamical systems arising from real-spacé¢he diffusion equation as a guidé]. A vertex current rule
renormalization of Laplacian problems on regular fractal lat-similar to Kirchhoff's law is adopted to ensure conservation
tices. Thus the wave mechanical or diffusion Green function®f material. To relate bond currents to the node concentra-
for a variety of lattice types can be analyzed rather comtions we adopt a generalized Fick's law. In this way one
pletely. We define first the physical models and then theconstructs finite difference diffusion schemes based only on
renormalization procedure. Finally we present the method o&djacency rather than geometrical distances or angles. By
reduction with several examples. comparing with the diffusion equation, these bond and vertex

The diffusion equation, the Schdimger equation, and the rules define difference Laplacians that can be transported to
classical wave equation are each based on Laplacian operather physical problems, such as wave propagation.
tors. They relate to one another through changes in time Once the problem is replaced by a system of differential
dependence and of boundary conditions. In simple geomequations it can be reduced to linear algebra by Laplace or
etries one can apply Lie theory to construct solutions of genFourier transform. Finding symmetry transformations is
eral partial differential equationd®DES9 by making use of more difficult for the resulting difference equations, but al-
continuous symmetries. However, since these must be synternative solution methods become available, such as direct
metries of the boundary conditions as well as the differentiahumerical solution, graph theoretic methods, or real-space
equations, the method is often less useful for regions withrenormalization. In the latter method one finds recursion re-
very complicated boundaries. lations (usually approximatefor some set of properties on

A standard way to treat Laplacian-based PDEs in complexne length scale in terms of the same properties on another
spatial regions is to make the space coordinates discrete. langth scale.
general terms, space is replaced by a graph serving as a The fractal paradigni2] is a natural one for classifying
quadrature grid and the PDEs are replaced by a system gtaling laws in structures where there is some form of self-
coupled ordinary differential equations, one for each nodesimilarity. General scaling theory of diffusion in fractal
so that time remains continuous but space becomes discrestructures is well developed. It is reviewed by Havlin and
Thus the original continuum problem is embedded in a clasBen-Avraham{3]. It is sometimes argueldi—6] that regular
that also includes discrete lattice models that do not correfractal lattices capture important aspects of critical percola-

tion clusters, aerogels, or even amorphous solids while

avoiding the difficulty of true randomness. However, another

*Permanent address: Dipartimento di Ingegneria Chimica, Unijustification for studying regular fractals, in our view, is that
versitadi Cagliari, piazza d’Armi, 09123 Cagliari, Italy. one can obtain many analytical results. Often problems not

1063-651X/97/58)/6741(12)/$10.00 55 6741 © 1997 The American Physical Society



6742 W. A. SCHWALM, M. K. SCHWALM, AND M. GIONA 55

solvable on Euclidean lattices become solvable on regulgprinciple, it is less useful than the one developed for integrat-

fractals. Exact solutions give insight different from that af- ing differential equations. We elect not to follow it, although

forded by the approximate solution of more realistic modelsmaterial given below on reduction of order produced by a
The structures dealt with here are hierarchical graphs sucgontinuous symmetry is taken mostly from Rg£9]. It is

as the ones first introduced by DHat]. Scaling properties, outlined here for completeness.

especially exponents, are known for a variety of regular frac- In the following sections we apply real-space renormal-

tal lattices[7,4]. The Laplacian-based problems, including !zati(_)n to find Green functions for Laplacian-based _equations

the Schidinger equation, the scalar wave equation, and thé’ difference form on se\{eral regular fractal lattices. We

diffusion equation are the most relevant to the discussiorsnoW how the method of Lie can be used to reduce the order

below. Domanyet al. and Rammal8,9] renormalized the of th_e recursion relatlo_ns. In some cases this results in a

Schralinger eigenstategr vibrational modesof a Sierpin solution for Green functlons at sp_ecmq values of the energy

ski lattice to obtain the energidfrequencies and the wave parameter as functions of the lattice size.

amplitudes. The spectrum consists of a Cantor set of eigen-

values corresponding to hierarchical wave functions, and iso- IIl. LAPLACIAN PROBLEMS ON LATTICES

lated frequencies in the gaps of the Cantor set that corre- | this section we review the standard difference models
spond to molecular localized modes. The latter are symmetny; the diffusion equation, the scalar wave equation, and the
decoupled with wave amplitudes that vanish outside a circleschrajinger equation while noting the relationships among
of fixed radius. These spectral properties are considereghem particularly with regard to changes in boundary condi-
characteristic of finitely ramified fractals. tions.

~ Rammal[9] and Tremblay and SouthefdO] renormal-  pg recipe given above leads to a typical diffusion model
ized the Green function generating function by decimation iny¢ the form

order to study integral spectral properties of fractals. Alex-

ander{11] introduced the transfer matrix renormalization on d

regular fractals. He demonstrated that a substantial simplifi- Eci(t):; kijLcj(t) —ci(t) ]+ fi(1), 2.1
cation results from reduction of the Green functions with

respect to the point symmetries of the lattice. We revieWyherek;; is the microdiffusivity or bond conductance be-
below certain aspects of Alexander's synthetic method ifyeen sites andj. The sourcef,(t) is added as a formal

which Green functions are expressed in a symmetry adapteghnyenience. We can reorganize the sum using
basis projected from irreducible representations of the point

group. The transfer matrix method applied only to a small set

of pivotal Green functions has been used by several authors Kij=kij— 5ii; Kin » 2.2

[12,13. For the pivotal set one obtains recursion relations in

the form of rational functions, which can be considered as &o that

discrete dynamical system or as coupled difference equa-

tions. Application of the method to transport problems in-

volving the diffusion equation has been presented in detail aci(t):; Kijej () +i(1). 2.3

elsewherdg14]. Below we show how to reduce the order of

these dynamical systems. In some cases the recursions dehe summation on the right side is the discrete analog of an

couple completely, resulting in explicit solutions. integral operator with kerné{. Boundary conditions are in-
The Lie theory of integration of differential equations cluded, as long as the index range covers the entire graph

subsumes all other integration methods. Lie showed that alclosed system In vector form,

known integration methods are equivalent to finding continu-

ous groups that permute the solutions and then using these

groups to reduce the ordgt5-17. For equations of second

order or higher the group theoretic method also gives an

algorithm for finding the groups. One problem with applying Laplace transforming gives a linear algebraic equation

Lie theory to difference equations is that there is no system- - N X

atic way to find a continuous symmetry, although once a sc(s) —c(0)=Kc(s) +1(s), 2.9

group is found that commutes with the recursions it leads to

a reduction of order, just as in the case of differential equa9r

tions. A\~ 2
The group theoretic reduction of systems of differential c(s)=GV()[f(s) +c(0)], (2.6

equa’gions m_akes use of infinitesimal group generators. Thesghere entryGi(»d)(s) of the resolvent

are differential operators that when exponentiated reproduce !

the action of the group on functions of the basic variables. G9(s)=(s—K) 1, 2.7

An important tool is the prolongation of a generator, which

reproduces the action of the group on functions that includelefined fors outside the spectrum of the matkx is a Green

also derivatives. In the approach taken by Magk#l and by ~ function for diffusion fromj to i with mass conservation.

Quispel and Sahadevdri9] one extends prolongations to ~ Sometimes it will be convenient to chani§eby changing

include finite differences and obtains a functional equatioronly a few bonds. This happens when introducing external

for the group generators. While this approach is useful inconnections, deriving renormalization recursions, or trans-

d
ac(t)=Kc(t)+f(t). (2.9
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forming between problems. Thus we find the following stan- — o ¢ o—o—0o

dard result useful. SupposeG,=(z—A) ! and 1 3 4 2

Gc=(z—C) ! for general complexz where C=A+B.

Simple manipulations yield ;“"“’“"—“—"“‘“’“—‘—_;
GC:GA+ GABGC . (28)

FIG. 1. Recursive construction of linear chain. Two copies of

This relation is particularly useful wheB is sparse. generatiom are connected to form generatior-1. Numbers in-

A difference model for the scalar wave equation, oftendex connection sites.
applied to vibrations, differs from E@2.1) in two ways. The
time dependence and boundary conditions are differentic matrix. We put Eq.(2.14 in vector form and Fourier
When there are no external springs, the typical scalar vibratransform from timet to the complex energ¥+i». The
tion model is exactly as in Eq2.1), except that the time Green functions are then entries of
derivative is second order. Local displaceman(s) replace _ . L
the concentrationsk;; becomes a spring constant, aft) G¥(E+in)=(E+in—H)™". (219

is an external driving force. Thus i )
Thus each of the common Laplacian difference models

d? leads to Green functions that are entries of

JeuO=2 ke —c(®]+fit). (2.9

J G(2)=(z—H)™ 1, (2.16
Since there are no external springs, no tension is maintainq;ahere the complex parametersignifies time dependence.
and the structure has many zero-energy distortions or ZerQ=0, diffusionz=s. for the wave equation= — w?— 2i /T
frequency modes. To supply gxternal springs for anchor_s ON&nd for the Sch'miinger equatiorz=E+i . The matrixH is',
can use a sparse mattkthat is zero except at the physical he Hamiltonian for the Schdinger equationK for diffu-
boundary of the vibrating structure. Thus for the anchore ion, andK + B for the wave equation. In any case, boundary

model conditions can be adjusted using a boundary ma&riXhus
it is possible to map back and forth between problems.
Kijzkij_5ij<z Kint 2 Kib |, (2.10
" b [ll. RENORMALIZATION AND POINT SYMMETRY
with the primed sum running over external springs attached REDUCTION ON REGULAR FRACTALS
to sitei. Whence in order to obtain this model from Eq.
(2.2, A trivial example is a linear chain of"2sites as shown in

Fig. 1. Imagine constructing the chain in steps or generations
B —_ 5__2, K (2.1 indexed byn. At generatiom the lattice consists of "2sites.
= G4 Tibe : In the next step, two generatiam chains are joined by a
bond to form a chain of length"2 !, which makes genera-
It is often useful to include a viscous damping term. For thetion n+1. )
wave equation a Fourier transform is more natural, so the Consider a Schdinger problem on the linear chain. For
analog of vector Eq(2.5) for the damped, anchored vibra- the HamiltonianH we take the adjacency matrid=A.
tion model is [This is related tK + B of Eq. (2.12 for the vibration prob-
lem when all spring constants are unitk;=1, by
H=K+B+ 2. Alternatively one could usel=2—A so that
the spectrum would extend from 0 to positive enefghe
Green functions of interest are entries®z) =(z—A) ..
The damping timer is assumed the same throughout for The renormalization method is discussed in detail in Refs.
simplicity. The corresponding Green functions are entries 0f12,13,6,14 We illustrate it for the case of the linear chain.
The basic tool is Eq(8). Consider the process of construct-
ing generatiom+ 1. LetG, be the set of Green functions on
the two disconnected pieces of generatiprand letB pro-
] o vide the bond to connect them. Thus, referring to Fig. 1,
A difference model for the one-electron SCdmlger BIJ = 5i35j4+ 5i45j3! soB has on|y two nonzero entries. The

—wzﬁ(w)—ZITwﬂ(w)z(KJrB)ﬂ(w)+f(w). (2.12

2iw -1
GV(w)=— w2+T+K+B . (2.13

equation(no magnetic fieldis pivotal Green functions ane=Ga11(2), y=Gas1(2) on gen-
q eration n and X=G¢14(2), Y=G¢,(2) on generation
|— .t:z H. o (t 21 n+1.
g (D=2 Hyu (o). (214

From Eq.(2.8),

The difference Hamiltoniamd is typically a Laplacian like X=X+YGca1(2), Y=YGcs1(2),

K defined in Eq(2.10 with kjj=Aj;, which is 1 ifi andj

are connected on the graph and O otherwise. Or else when  Gg31(2)=y+XGcy1(2), Gear(2) =%xGeg(2). (3.2
the wave function is expanded in a linear combination of

localized basis functions] can be a more general symmet- These yield the recursions
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(a) (0)

1 4
2 3

FIG. 3. Fourfold coordinated Sieryski lattice showing removal
of corner sites to facilitate writing recursions.

fusivity kj;=k and solid lines correspond tq;=1. Hood
and Southern studied spectral properties on a model similar
to this [21]. Recently Adroveret al. have studied scaling
crossover for diffusion in this mod¢R2]. We consider the
Schralinger equation for definiteness withthe generalized
adjacency matrixA;; being 1 for strong bonds for weak

FIG. 2. Anisotropic 3-simplex. Sites 1, 2, and 3 are connectionbonds, and zero otherwise. The lower corner sites are 1 and
points. 2 and the upper corner is 3. Due to anisotropy, four pivots

are necessaryx=Gq4(2), y=Gy(2), u=Gz2), and

xy? y? v=G34(2). The recursions are obtained as in the case of the
12" (3.2 chain by considering the connection of three blocks together
via two strong and one weak bond. However, the recursions
obtained in this way are a bit complicated and contain the
parametek. To simplify them and scalk out, we make use
of the symmetrized coordinates

X=x+

For any lattice constructed by attaching generatidmocks
together to make generationt 1, one obtains similar recur-
sions for a set of pivotal Green functions.

Alexander[11] showed that a considerable simplification

results from transforming to a point symmetry adapted basis. p=x+y, g=x-y, r=uk s=uvik. (3.6
We will not use all of his machinery, but we will make use .
. - - . . Then the recursions become
of the basic idea. Le¢; ande, be basis vectors with com-
ponentse;; = &1, €, = 5, in the space of the vectay of Eq. (1—pg)(p—q—pr+qr+2s?)
(2.14). The point group of the structure has two operations, P=a+5= pZ—pg—2r+p’r+pqr—2ps’
the identity and reflection. The two irreducible representa-
tions are evercharacter 1and odd(character—1). A sym- (1+q)(1—q)(p—qg+pr—qr—2s?
metry adapted basis is prepared using the van Vleck machine Q= > At dir 2 —par—aZr 202
[20]. In this simple case paTq par—q a 3.7
1 N 25?(p+q—pr—qr+2s?)
eevenzﬁ(el+e2)r eodd:ﬁ(el_ez)- (3.3 T TP —pg-2r+p’r+pqr—2ps’
—0— 2
The point symmetrized Green functions are _ s(p—g—pr+qr+2s%
i i 2—p?—pg—2r+p’r+pqr—2ps*’
P=€ecverr Gcever=XTY,
even mCTeven Again they comprise a mapping defined by a set of rational
q:éodd' GCéodd:X_Y- (3.4 functions, i.e., ratios of polynomials, and certain fixed mani-
folds are evident.
Using these coordinates, the recursions become Figure 3 illustrates construction of the fourfold coordi-
nated Sierpiski lattice of Refs[8] and[9]. Consider diffu-
Pp_ (1-p)(p—a) Cgi (p—a)(1+q) 3 sion. To apply the same kind of renormalization directly in
P g Q=g+ — 2+p+q B9 this case requires removing the corner sites as shown in Fig.

Evidently the linesp=1 andq=—1 are invariant under

3(b). Thus there are six distinct connection points and five
independent Green functions per generation. With corner

the mapping defined by E@3.2). These lines are related to vertices as indicated in the figure, a pivotal set is
mass conservation in the diffusion problem, as we shall se&=G,,(z), y=G3)(2), t=G,(2), u=Gy(z), and

The lineq=p is fixed because in the limit of a very long y=G,,(z). A more convenient set consists of the symmetry
chain there is no propagation from one end to the otheradapted variablegl1]
either by classical diffusion or electron quantum mechanics,

so iteration of Eq(3.2) leads toy=0 for almost all energies. p=x+t, gq=x—-t, r=u+uv, 3.8
Figure 2 shows a lattice model for anisotropic diffusion 3.8
on a 3-simplex lattice. Dashed lines correspond to small dif- sS=u—-v, mM=u+2v+y.
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It is useful to think of the recursion formulas as mappings of
the pivot space into itself, thus defining a discrete dynamical
system. In this sense they are systems of nonlinear difference
equations. A solution to the difference equations in each case
would be formulas giving the Green functions at generation
n as explicit functions oh. As we shall see below, we are
able to obtain an infinite number of such solutions in many
cases. These exact solutions are obtained at a certain Cantor
set of initial conditiongCantor set irz). In the ideal situa-

tion one could find formulas for the pivots as functions of
both n and z for any z. We will not be able to do this, in
general, because the Cantor set of exactly solvahlalues

is determined by the chaotic dynamics of an irreducible set
of maps. In the case of the linear chain, the irreducible set
contains only the solvabléTchebyshey case of the qua-
dratic polynomial map. Therefore the map is integrable and
the problem is completely solvable.

-!-j‘ut--!-- --Iut-t‘t-L
'I':;:'I"I" "I"I';‘;'I'

FIG. 4. Vicsek lattice.

The recursions are

m2(1_4 p) IV. LIE GROUPS AND REDUCTION OF ORDER
P=p+ , I . . .
P (1-2m—4p)(1+m—4p) Tools presented in this section are used in the following
one to decouple recursion equations. First we show what it
_ (m—2r)? means for a dynamical system to admit a continuous group.
=q+ 1+m—4p’ We show that when the system is expressed in terms of the
canonical variables of the group its order is reduced. In the
m(2m?+r —2mr—4pr) 3.9 following section we will consider strategies for finding such
= : 3.9  agroup.
1-2m—4p)(1+m—4
( P P) Consider a discrete dynamical syste¥nof the generic
_(m=2nyr form
~ 1+m-4p’

m2(1+2m—4p) X=1f(x,y,2), Y=9(xy,2), Z=h(xy,z), (4.1

(1-2m—4p)(1+m—4p)’

. . . wfth X=X, andX=x,, 4, etc., as usual. These recursions are
In this case, since the corners have been removed, the pivot ! ; :
also autonomous difference equations, meaning rihdbes

Green functions are not the ones for the closed systeni,

Rather they are the ones appropriate for attaching a reservori]rOt appear explicitly. We consider the action of a continuous,

at each connection site. one-parameter groug of transformaﬂogsNacting on the vari-
Figure 4 shows a Vicsek latti¢@3]. Dynamical problems ~ables. ThusX,y,z) are replaced byx,y,z) such that

on this lattice have been treated by several authors recently

in connection with modes of a fractal druf@4,25. Diffu- _ _ _

sion of material and of vibrational energy on this lattice are Xx=u(x,y,z,a), Y=v(X,y,z,a), zZ=W(X,Y,Z ).

discussed elsewhef26]. We first consider diffusion. Pivotal (4.2

Green functions arg=G;4(z) andy=G,4(2), where 1 and

2 are two distal corners. The recursions iy) become

[26] The substitutions form a group with respect to composition.
For the group operation the parameters add sodha0 is
_ yA(1+2x+2y) the identity and— « indexes the inverse element. The func-
X=X (1+2x—y)(1+2x+3y)’ tions u(x,y,z,a), etc. are continuous ir. Quispel and Sa-
hadevar{19] point out that although the systefis autono-
y3 mous, the group transformatiodsmay depend om in the
Y= (1+2x—y)(1+2x+3y) " (3.10 most general case. However, for the examples below we

need not include theé dependence. Hence the discussion
Since the Vicsek lattice is not a rigid structure, the pointSimplifies.
symmetry reduction is less profitable in this case. As usual 10 say the systens admits the groufy is to say that it
the recursions are rational, and the lipe 0 is fixed. does not matter whether one makes the substitutior{(Z2).
The examples above are typical renormalization recursioRefore or after applying the recursions E4.1), the result is
relations for Laplacian dynamical problems. Each one can bthe same. In other words(X,Y,Z,a)=f(X,y,z), etc., or,
iterated to obtain Green functions at any desired generatiorin full detail,
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u(f(x,y,2),9(x,y,2),h(x,y,2), @) cursions. In this way electric circuit theory integrates the
Schralinger problem on a lattice.
=fuxy,z,a),0(xy,z,0),W(xy,z,a)), A substitution groupg of the form Eq.(4.2) defines a set
of mappings of the pivot space into itself, one mapping for
v(f(x.y.2).0(x,y,2).h(x.y.2), @) eacha value. Letg, be the group element corresponding to

=gu(x,y,z,a),v(X,y,z,a),W(x,y,z,a)), (4.3  the particular valuex. In this sens&j is on an equal footing
with the dynamical systenS, Eq. (4.1). The two important
w(f(x,y,2),9(x,y,2),h(x,y,2),a) differences are that each transformationgois one to one,

and the imageX,y) of a given point &,y) is a continuous
function of @, while of course neither of these two properties
If we think of both the group elements ¢f defined in Eq.  nheeds be true for the action 6f We will use the following
(4.1) and the recursions of mappings, we may say equiva- observations.
lently that G commutes withS or thatS is invariant under Let P be a fixed point ofS. Supposeg, takesP into
G. The meaning is that each group elemgpttakes each P(«). SinceG commutes withS, P(«) is also a fixed point
solution of the difference equations into some solutjpos-  of S. If there is a neighborhood d® that contains no other
sibly the samg fixed point ofS, thenP must also be a fixed point @, since
Interest in finding a group admitted by a given systemp(«) must tend toP continuously asx—0. The only way

stems from the fact that the group can be used to reduce thgis can happen iP is isolated is thaP(«) is actually the
order of the system. The procedure is first to find canonicalgme a< for all « near 0. Thus an isolated fixed point of
coordinates ofj. WhenS is transformed into canonical co- the system must also be a fixed point of the group.
ordinates, one of the recursions equations decouples. By ca- an invariant set ofS is a setT, which S takes into itself.
nonical variables of the group we mean a safb(c) in  |n other words, each point if maps by recursions into
terms of which the action analogous to £4.2) becomes  gnother point inT. It follows that if the curveP(\) is in-

- — - variant under the action of, where A parametrizes the

a=a, b=b, c=c+ta (44 curve, then each element 6fmust takeP(\) into a fixed
point or some invariant curve. This may be either the same
or another invariant curve. If it is the same one foralthen

=h(u(x,y,z,a),v(X,y,z,a),W(X,y,Z,a)).

Making use of this simplification in Eq4.3) one has

A=F(a,b,c+a), B=G(a,b,c+a) the curve is also a group trajectory. Thus in particular a fixed
" ' o ’ (4.5 line of the recursion map must be a group trajectory. If
C+a=H(a,b,c+a), P(\) does not go into the same curve, th8must have a

higher dimensional invariant sét(«,\), whereP(a,\) is
whereF(a,b,c), etc., are defined by changing coordinates inthe image undeg, of P(\). In the latter case, the group
Eq. (4.1). Since Eq.(4.5 should hold for alla, one can set permutes invariant curves within the sub&,\) of T.
a=—c, so in fact the recursions far andb do not depend Next suppose poin@ is in the preimage of an isolated
on ¢ and the recursion fot is decoupled: fixed pointP of S. SinceS admitsg, the group take® into

Q(a), which must be in the preimage with respectSmf
A=F(a,b,0), B=G(a,b,0), C=c+H(a,b,0. (4.6  P(a). Thus a one-dimensional preimage of an isolated fixed

point of the system comprises a set of group trajectories con-
The solution forc is just a summation of a function of the nected together end to end by group fixed points. In the

solutions fora andb. simplest case, it is a single trajectory with fixed points at
The method of finding canonical variables in this case ignfinity.
straightforward and can be found in REL6]. In essence it Finally, supposeP(«) is a group trajectory, and suppose

differentiates @,b,c) with respect toe in two different S takesP(«) into another curveQ(a). Because the group
ways, one explicitly using Eq4.4) and one via the chain commutes with the dynamical syste@(«) is also a group
rule froma=2a(Xx,y,z), etc. Settingr=0 gives a system of trajectory. We conclude that the recursion relations map the
three first order linear PDEs fa, b, andc. In many cases {rajectories of the group into one another. o
they can be solved quite easily. The existence of curves permuted by the renormalization
The reader can see that the difficult part is to find therecursion relations has been reported for a number of lattice
group. We know of no systematic way for general dynamicalProblems 27—29. To discover an invariant family of curves,
systems. However, for systems arising from renormalizationd hence perhaps a group, one can concentrate first on the

of Laplacian lattice problems the strategies we present in théxed and invariant manifolds of the renormalization map
next section have been found quite successful. S. It turns out that the connection to the renormalization of a

resistor network becomes important. A detailed treatment of
fractal resistor networks is given by AdIE3O].

Consider the recursion Eq€.5 for Schralinger Green
The method depends on the relationship between invarifunctions ,y) for the end points of a linear chain. We dem-
ant sets ofS and group trajectories of. We begin with  onstrate the reduction process for this simple example first.
informal comments on invariant sets, then using the exThe more difficult lattice examples presented below follow

amples we show how groups can be found from circuithe same general pattern.
theory, and how to use them to reduce the order of the re- The connection to diffusion is straightforward. Begin with

V. FINDING GROUPS
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diffusion in a completely closed chain wi as in Eq.(2.2). limit. For ¢;=0 theY recursion depends only on namely
Now attach the ends of the chain at sites 1 &htb reser- Y=y/(2—y). Using Eq.(5.6) to change variables gives the
voirs of concentratiort, andc,, respectively, using bonds expected resistor recursié=2r + 1. Hence current conser-
of diffusivity 1. The equation is vation in the steady state gives both an invariant line and the
q static scaling. In the anisotropic simplex example the corre-
9 L o _ _ sponding result will appear less trivial.
dtc'(t)_zj: Kij (1) + 8ia(Ca= Ca(t)+ Gin(Cp=Cn(D)). The dynamical systens represented by recursion Egs.
(5.2 (3.2 has a line of fixed points at=0 and another invariant
line x=0. One finds another invariant line,
USing H=K+B with B” =— 5i15j1_ 5iN5jN gives
¢$3=1+x—-y=0, (5.9

d
aci(t):; HijCj(DF diaCat SinCy, 52 andinits preimage

whereH is the same as in the Scidiager problem leading $4=1+x+y=0. (5.10
to Green functions recursions, Eq8.2). The remaining res- ) ] o
ervoir terms act as sources. Thus one finds the following foff S admits a groug then the lines comprising the zero sets

the end-point concentrations in the Laplace domain: of X, y, ¢1, ¢2, ¢3, and ¢, must be trajectories of. The
systemsS also has fixed points at. G has fixed points wher-
61(s)=x(s)ca/s+y(s)cb/s, ever two trajectories intersect so (0,0), (1,0);10),
(5.3 (0,1), and (0;-1) are fixed byG in the finite plane. An
Co(S)=Y(S)Ca/S+X(S)Cp/S. efficient strategy is the following. Taking advantage of the

connection between the Schiinger problem and diffusion,
From the circuit analogy, the electrical resistance from endransform from the wave mechanical Green functiong/)
to end should be the steady-state limit{x) of the ratio of to Green functionsX.,y.) for diffusion in the completely
Ac(t)/I(t)=[cq(t) —co(t) 1/[ca—cq(t)], wherel(t) is cur-  closed chain. The recursions foty(y.) may be expected to
rent flowing in through the external bond attached to site 1simplify since material conservation is taken into account

Since for Laplace transforms the |im.f(t)=limg osf(s), automatically. Using the general EQ.8) with B as defined

the resistance is above, the coordinate change is
(ca—Cp)[x(0)—y(0)] x—x*+y?
r(c,,Cp)= — — . (5.9 Xe="7" —,
Cal 1—x(0)]—cpy(0) (1=x+y)(1=x-y)
(5.1
But, the resistance(c,,c,) should not depend on, and y
Cp- In particular, the current should be independent of the yc=(1_xJr I—x—y)’
sumc,+cy, . Thus for current conservation in the static limit y y
$=1-x—y=0 (5.5) in terms of which the recursions are
2 2
and hence X =x, Ye Ye (5.12

T142x. ¢ 1+42x
r=(1-2y)ly. (5.6
_ . _ ) ) There are no isolated fixed points. The lipg is fixed.
The constraint Eq(5.5) is one of the desired invariants. the mass conservation line is now @t and the inverse
Point (x,y) initially on the line ¢;=0 corresponds to a image of is the line 1+2x,=0. The linesy,=0 and
Kirchhoff steady state, which iterates into another point1+2XC:0 must be trajectories of any grogpadmitted by
(X,Y) on the same line. To see this, faci{(X,Y) substi-  the (« " v.) recursions. These intersect at {/2,0). By con-

tuting from Egs.(3.2): tinuing to take inverse images, one can construct an unlim-
ited number of group trajectories. However, the only inter-

(5.7 section in the finite plane of any pair of these trajectories is at
(—1/2,0). This is a fixed point of any group that permutes

lutions of the renormalization map fax.(y.).

The next step is to translate coordinates to put the group

fixed point at the origin. Taking;=x.+1/2 andy;=Yy,,

v AmxHyA-x-y)

1-X- T—x

This factorization computes the preimage of the zero set of°
¢1. Since pq(x,y) divides ¢1(X(x,y),Y(x,y)), a point ini-
tially on ¢4(x,y)=0 remains there.

The preimage ofp, contains also 2x2—y,2 - y2

Xi=—F—"—, Yi=—. (5.13
by=1—x+y=0. (5.9 T2 " 2x
The line ¢,=0 is invariant under any group admitted by the In this example the new recursi_ons are h_omogeneous, so the
recursions, but not under the recursions themselves. group flow is radial. The recursions admit the group

The pivotal Green function recursions E@®.5 contain _ _
also the recursion for resistance of the chain as their static Xi=€e%%;, VYi=e%;, (5.19



6748 W. A. SCHWALM, M. K. SCHWALM, AND M. GIONA 55

with canonical variable®=Xx;/y;, c=Iny;. The decoupled (Pe—0e) (1+pet0c)
recursions are finally Pc=0c+ 2+ 3p. g ,
Cc Cc
B=2b’-1, C=c—In(2b). (5.15

. . . . L Q.= (14 20¢) (Pe—Ge+ 2Pcr ¢— 20T ¢ — 4Sc?)
Notlcg that. the selectlo_n of qanomg:al coordlnate_s is similar ¢~ e 2+ Dot 3ot AT ot 2T o+ 60T — 452
at this point to selecting dimensionless combinations of

physical numbers. We seek dimensional or isobaric groups. (5.17)
The solutionb=f(0§n), wheref( -) is cos() whenb?<1
and cosh() for b®=1, is well known. The solution fot is a 4s.?
summation. Using the coordinate transformations from Re=re— 2+3p.+q.’
(a,b) back to &,y) solves the original Scainger problem.
There are many ways to solve for Laplacian Green func-
tions on a linear chaif32—-34. It is no surprise that an exact S = (Pc—Ac)se
solution is possible. The point in this case is that the steps ¢ 2+3pctac’

leading to the decoupling, i.e., all steps but the last, work

equally well on a wider class of fractals. The result is that inTpe two-dimensional fixed plane defied by setting both
each case the order of the recursions is reduced. Often thig _q_ and's, to zero contains all finite fixed points of the
leads to a very complete analysis of the underlying 'atticedynamical system Eqg5.17. The inverse image of ob-
problem. tained by factoring the reciprocals of E§.17) intersects the

In summary, the steps are as follows) transform the fixed plane at the unique point-(/2,~1/2,—1/2,0). All
problem to a diffusion model with closed boundary condi-inyerse images one can construct contain this unique point in
tions. (2) Obtain invariant manifolds of the group as inverse common. It is a candidate for a group fixed point. Thus we

images of fixed sets of the recursions. The intersection ofjefine new coordinates centered at the fixed point. In terms
these will contain group fixed points. Typically the intersec-qf these the recursions are

tion is a single fixed point(3) Move the fixed point to the

center of coordinate$4) Look for products of powers of the

new coordinates to be invariant under the recursions. These = Pi(Ps+3ar)
form theb’s of a set of canonical variables, i.e., the ones left 3ps+ Qs
fixed by the group flow. Each distinct choice of the invariant

products gives another grougb) A canonicalc for each qs(3p;r ¢+ g ¢ — 65¢2)
group, i.e., a coordinate along the flow is the logarithm of Q= DT 130T — 25,2

any convenient variable used to form theroducts. (5.19
We illustrate by applying the method to each of the three

remaining lattice examples introduced above. 3psrs+qsr— 4s¢?
The symmetrized Green functions for the Salinger = 3p;

equation on the anisotropic simplex Fig. 2 are defined in Egs.

(3.6) and renormalize according to Eq8.7). These pertain

to the case where the Hamiltoniah is just the adjacency s _ (Pr—ay)ss
matrix A. To obtain a diffusion model, let=s+2+k be the " 3pitq;
argument in the general resolveB@i(z) of Eq. (2.16. To

close the system with respect to loss of material at the COmef,, fing the possible isobaric groups, we apply dimensional
pmits requires a boundary transformguon analysis. Clearlyg; and ps must have the same isobaric
Bij = 0i10j1 + 8i20j2 1 ki3 5. The rescaled Green functions weight while s; can have different weight. The weight of
corresponding to (f,q,r,s) in the case of diffusion in the r. is determined by the choices of weights fo and's, .
closed system are Thus the recursions admit the scale transformations

_ p—pr+2s? _ _ _ N
pc_l—p—r-i-pr—ZSz’ pr=eps, qr=e%qs, ry=e’"°ry, si=els;.
(5.19
q . ) .
Qc:m, Equation (5.19 defines the product of operations of two
(5.16 commuting groups, one parametrized &yand the other by
F—or+ 252 B. Thus it is possible to define two scale-independent prod-
r.= P ucts,a andb, and two other canonical variables by
¢ 1-p-r+pr—2s*’
Si2 s
s — S a=——, b=&, c=|n(—f), d=Ins;. (5.20
C 1_p_r+pr_252 pfrf qf rf

The recursions become The decoupled system is finally
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a(1-b)? and the current conserving constraint is
A= ;
+ +3b—
(3+Db)(1+3b—4ab) $1=(1-p)(1-1)—2s52=0. (5.24
_ b(3+b)(3+b—2ab) From Egs.(5.16 this verifies that the current conserving
(1+3b)(1+3b—6ab)’ (5.21 states are at in p., I, ands,. Computingr 3 requires
' reservoirs attached at sites 1 and 3, so yet another boundary
Cect] b—1 change is required. If we subscript the Green functions with
—CrIN 13— 2ab)’ a in this case,
— Xa(0) —kv4(0)
_ M= 5.2
D=d+In 173/ 13 1—-%,(0) (5.29

Thus, because the recursions admit two groups, the order € current constraint depends ko this case even though

reduced by two. k has been scaled out of the recursions. In terms of
Equations(5.21) may not reduce further as they represent(P.d.r,s) the conservation condition is

renormalization of the physical parametsrandk. The ini-

tial values for @,b) of Egs. (5.21) depend onk and on $o=k(1-r)=2(1-p)=0. (5.26

z=s+2+k. If we identify (a,b) after one iteration of Eq.

(5.2 with initial conditions expressed in terms of névand

Z values we generate recursions:

Another way to obtain the constraints is to attach reservoirs
of concentration 1 to all the corner sites at once. This results

In
k(z+k—1)(z+k+1)
T (k- KH 1)(KzH K2+ 1)’ 522 ¢3=1-p-syk=0 (5.27
(PK-3)(z+k) and
(kz+k>+1) ' $4=(1-1)yk—25=0. (5.28

The only z-independent fixed points are=0 andk=1, ¢ is found on eliminatingk betweeng; and ¢, while
which represent the linear chain and isotropic simplex |'m't3eliminatings gives ¢,. Equations(5.24 and (5.26) can be
The line 2-z—k=0 is invariant, meaning the static limit seen as requiring simultaneous conservation of chéoge
s=0, or the edgeE=2+k of the energy spectrum in the mas3 and anisotropyk. We needk to be a constant of the
Schralinger problem, corresponds from one generation tqnotion so that quantities on successive generations continue
the next. Using this fact one can find the spectral dimensiokg refer to a model with the samevalue. When we try to
[35]. o _ _ visualize the recursions in terms of renormalizingndk in
Renormalization equationts.21) or (5.22 derive from  Eqs (5.22), their coupled evolution becomes inconvenient.

consideration of diffusion. But any such recursions apply Modulo ¢3=0 and ¢,=0 the recursions fop and g
immediately to the quantum mechanical or vibrational mod-gecouple in Eqs(3.7):

els as well. The change of time dependence is straightfor-

ward and the chance of boundary conditions via any bound- (1-9)(1-pQq)
ary matrixB that applies only to the connection points only P=q m
generates a coordinate change, as we have seen, from one set (5.29
of pivotal Green functions to another. Thus the solutions are _ _ N
transported back to the original Scdinger problem using Q= (1-+qll-p)(1-9) —k(p*a]

i ined i (2+a)(1-p)(1-q)—k(2—pa—a?)
the coordinate changes defined in E¢3.6), (5.16, and q P a pPa—q

(5.20. The symmetry groups are conveniently found for the . . . .
diffusion boundary conditions because of the connection tGNd the resistances in terms of Green functions=a0 sim-
static scaling of electrical resistance. It is worth deriving thePlITy t0

steady-state or static limit in the anisotropic lattice where it

is less trivial than for the chain. rlzzi, Fia= k(p*q—2pq)—2(1~p)
To obtain the resistance recursions for the anisotropic 1-q 2k(1-p)(1-q)
model, start with the diffusion problem for the closed system (5.30

and then attach reservoirs at sites 1 and 2 with concentr
tions ¢, and cy,, respectively. This requires a different
change in boundary conditiorBi’j=—5i15j1—5i28]-2 and

aI:hus, changing coordinates frorp,@) to (rq»,r13 one ob-
tains the resistor recursions

introduces source term%,c,/s+ §;,¢,/s. If (X,,Y)) are the (1+2r15)(1—2Kr 1o+ 2Kr19)

Green functions after correcting the boundary, the electrical Rio=r1ot 17 2K(1F T

resistance ;, between corners 1 and 2 is (1H T2t 1) (5.3
Xp(0) —Y5(0) (1+2r)[1+k(1+2r5)]

" 0 (5.23 R~ T k(T Tt 1)
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The latter equations can be verified by circuit theory. The

derivation shows how mass conservation locates an invariant a=In

curve. It can be found by enforcing current conservation in

one of several ways. One is tp require that_ resistance not b=Inm, c=In(m—2r+2s), (5.33

depend on reservoir concentrations. Another is to attach res-

ervoirs of equal concentration to the model with open bound- 1—4p

ary conditions at all external sitéSchralinger or vibration d=q, f=——.

problem and require the same concentration at each corner

in the long-time limit. The most efficient way is to transform

to closed(diffusion) boundary conditions. A group trajectory

is then obtained as the inverse imagesafBy clearing an

invariant curve of the dynamical system from the finite A=a+tln

plane, the latter procedure usually simplifies the group flow.

Often only a line or plane of fixed points of the system re- 1

mains, and the set where the inverse image of infinity inter- B=b+|n(—
L . . f+1

sects this will locate a fixed point of the group.

In the anisotropic example, the symmetry group is Abe-

lian. An example of a non-Abelian group is the one admitted C=a+In

by the recursion Eqg3.9) belonging to the lattice of Fig. 3.

In such a case the question of solvability arises. Wisen

admits arr -parameter group, the most obvious strategy is to D=d+

apply the reduction outlined in Sec. IV using a one- f+1

parameter subgroup, thus reducing the order by one. But then

one must ask whether the new system still admits a group of F=(f-3)f.

r—1 parameters. The criterion for a full reduction tbyari-

ables is that the original group be solvabi&]. The reduc- Thusa, b, andc decouplef satisfies an independent recur-

tion of order via a solvable group is discussed by MaedsiOn in one variable, and is a sum involving the orbits of
[18]. f anda. Recursionf is related to eigenvalue recursion one

can find from decimatiof8,9].
Finally, consider diffusion on the Vicsek lattid@3] of

The reduced recursions are

f—2

f+

f—2
f+2)’

+In

f+1

—In

1

1) (5.39

—h

ea

For the system of equation8.9) the mass-conservation

hyperplane does not appear at infinity. If one attaches reserfig 4 with closed boundary conditions. The diffusion opera-

voirs of equal concentratiog, to each connection site, then . ; AN
: e : . _tor is not the adjacency matrix in this case and the transfor-
the saturation condition is seen to imply a zero of either __ . : e
) mation B connecting the open and closed diffusion models
¢$1=x+y+t+u+2v—1 or ¢p,=p+m—1. The large-size

cL . | does not act only at the connection points, so it will not be an

limit is a zero either of each af, v, andt simultaneously or g gy matter to map the solution from the closed case ad-

else ofr, s, and 1 simultaneously. Taking inverse images yressed here to the open one more closely related to vibra-

we can construct enough group invariant sets to determingona| models. Transverse vibrations on a Vicsek lattice with

three one-parameter groups, each of which commutes Wit§eneral boundary conditions have been studied recg2fly

the recursions, namely, the groups generated by The renormalization of X,y) is given by Egs.(3.10.
Fixed points in the finite plane comprise only the line
y=0. The inverse image o# is the union of

o (1 \o o a4 4
ﬁlzmm_(z—P)%ﬁ“qa“g*Sg’ $1=1+2x—y=0, ¢,=1+2x+3y=0. (5.39

These three lines must be group trajectories. They intersect at
9 (—1/2,0). Moving the origin to this point by;=x+1/2,
Lo=— (5.3  Yr=Y one has the recursions

« 4} +Axty—5xyF—2y7
f= ’
2Xs— 2X:+3
d 1 9 [(m r\d [(m r\g (2x=y)(2x¢°+ 3yy) (5.36
— | c—p|=H =+ 5| =]|=. s
m \4 p \4 2/ \4 2)9s Vi
Yi

£3:m

T (25— yn) (2% + 3yp)

When exponentiated, the infinitesimal generators E8182  The equations are homogeneous, i.e., they admit uniform
reproduce the action of the groups. Together, they generatedyation, thus canonical variables aoe= x; /y; andc=Iny;.
solvable three-parameter group with Lie algebra characterfhe decoupled recursions are

ized by the single nonvanishing commutafdat,,L,]= L,.

With the generators one can get canonical variables, as de-B=4b3+4b?-5b—2, C=c—In[(2b—1)(2b+3)].
scribed by Stepharil7,16], (5.39



55 GROUP THEORETIC REDUCTION OF LAPLACIN . .. 6751

The b recursion relates the Cantor-set portion of the ei-physical problems that carry with them some deep symme-
genvalue spectrurtsee Ref[8]). To see this, use the initial tries. To solve approximate renormalization equations ex-
conditionx=y=1/s. The eigenvalues with weight at the dis- actly by finding groups they admit would be of less interest,
tal site of the lattice are the singularities of the Green func-certainly. We suspect such a project would also be less likely
tions. This portion of the spectrum consists of singularities into succeed. However, the uniform dilation symmetry found
(x,y) at generatiom+ 1 caused by singularities ok(y) at  in each example above, as well as most others, is a manifes-
generatiom. Using the initial values and the definition of the tation of the fact that scaling each resistor in a network by

coordinateb gives ans recursion N\ scales the entire network resistance ky lt is related
clearly to current conservation. It does not go away when
S=s(3+5s)(5+59), (5.39  symmetry of the lattice is reduced.

. . The techniques introduced above do not appear to work
meaning that ifS belongs to the Cantor set, the three rootsy o for statistical dynamical problems on hierarchical lat-

Sp(S), pe{1,2,3 also belong to the Cantor set. The spectralijces, even though the latter renormalize exactly and ought to
minimum is s=—4-— V2 and the spectral dimension ob- a4mit groups relating to inflation. Such statistical models in-
tained from S~15 at smalls is ds=2In5/In15=1.189,  cjyde spin Hamiltonians, percolation, self-avoiding walks,
which is a standard resu5]. Notice that although a gen- etc. The recursions are often polynomial. There is no mass
eral solution of theb recursion in Eq(5.37) is not known,  cyrrent to conserve, the inverse imageofs .

one can still find an infinite set of solutions as explicit func-  However, for dynamical systems where a symmetry group
tions of n [29]. Suppose, for examples is such that the exists, the strategy of Sec. V may be of use for finding it. It
initial value b,0 belongs to a 3-cycle with members js giobal as opposed to the method proposed by Quispel and

{b1=Dg,b3,bs}: Sahadevari19] in which one attempts to construct a series
3 solution of the group generator about a fixed point of the
_ difference equations. With luck one can hope to sum the
=- - +
Can n mz=l In[(2bm=1)(2bm + 3)] ], series and then integrate the resulting generator to obtain

group coordinates. Both methods require luck, and they are

Csn:1=Csn—In[(2b;—1)(2b;+3)], (5.39 to a large extent complementary to one another.
The steps to follow for finding a group that commutes
Can+2=Csnr1—IN[(2b,—1)(2b,+3)]. with renormalization of a Laplacian based difference scheme

) . are summarized already in Sec. V. For more general dynami-
As special as these solutions seem, they have been shown tg systems the part one might hope to generalize consists of

correspond to a set of transmission resonances in the electrgfy, following. First find fixed or invariant sets of the differ-
propagation problerfi29,31]. ence equations. These must also be invariant sets of the
group flow. When the recursions consist of rational func-
VI. SUMMARY tions, both invariant sets and their inverse images can be
found by factorization, as we have illustrated. The inverse

We have shown how to find Lie groups that commute. t also be i iant under th With h
with the real-space renormalization of dynamical problemémage Must aiso be invariant under the group. With enoug
amples of group invariant sets, one can take intersections

on regular fractals. Each such group reduces the number ) . ) . ;
variables in the recursions. Thus a partial and sometimes find trajectories gnd fixed points. These are apt to be of
total decoupling can be obtained. The procedure has bee\ﬁa‘lue for constructing a group. Once found_, a continuous
demonstrated with four examples: diffusir vibrations or s.ymmetry.group re_duces the order of the difference equa-
electron propagatioron the line, an anisotropic 3-simplex, a tions as discussed in Sec. IV.
fourfold coordinated Sierpski lattice, and a Vicsek lattice.
It has also been successful for a dozen or so other lattice
types, many of which are actually multiparameter families of The authors are grateful for the warm hospitality of A. R.
lattices[29]. Giona, A. Adrover, and members of the Italian Interuniver-
One must admit that the recursion equations dealt with irsity Center for Disordered Systems and Fractals in Chemical
the preceding sections come from a class of difference equd&ngineering at the University of Rome. Critical comments
tions with rather special properties. One reason for choosingnd corrections of D. Uherka and B. Moritz are also greatly
regular fractal problems is that they renormalize exactly. Theappreciated. Support of NATO CRG.941289 is acknowl-
difference equations correspond, however abstractly, tedged.
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